

臺灣公路容量分析軟體THCS 教育訓練

民國113年10月

時間	内容摘要
13:30~14:00	· 人員報到、軟體安裝
14:00~14:20	· 公路容量手冊及分析軟體簡介
14:20~15:30	 號誌化路口-公路交通系統模擬模式: 評估方法簡介 案例操作與軟體實機演練
15:30~15:40	中場休息
15:40~16:20	 高速公路基本路段: 評估方法簡介 案例操作與軟體實機演練
16:20~16:30	· 綜合討論、意見調查

15 -

1

0

■ 可至「臺灣公路容量分析專區」之「下載專區」下載軟體

網站導覽 首頁 軟體介紹 下載專區 常見問題 相關連結

教育訓練相關檔案

下載專區

公路容量手冊 分析軟體

臺灣公路容量分析軟體(THCS)2021年版

THCS 子軟體	對應容量手冊章節	安装楢	手冊檔案	教學影片	更新日期
高速公路基本路段	第四章	ZIP	PDF	連結	111.06
高速公路進出口匝道路段	第五章、第六章	ZIP	PDF	連結	111.06
高速公路交鐵區段	第七章	ZIP	PDF	連結	111.06
高速公路隧道	第八章	ZIP	PDF	連結	111.06
市區高架快速道路基本路段	第九章	ZIP	PDF	連結	111.06
市區地下道號誌化路口	第十章	ZIP	PDF	連結	111.06
郊區多車道公路	第十一章	ZIP	PDF	連結	111.06
郊區多車道公路號誌化路口	第十一章	ZIP	PDF	連結	111.06
郊區雙車道公路	第十二章	ZIP	PDF	連結	111.06
市區號誌化路口	第十三章	ZIP	PDF	連結	111.06
非號誌化路口	第十四章	ZIP	PDF	連結	111.06
圓環	第十五章	ZIP	PDF	連結	111.06
市區公車設施	第十七章	ZIP	PDF	連結	111.06
機車專用道	第十八章	ZIP	PDF	連結	111.06
行人設施	第十九章	ZIP	PDF	蓮結	111.06
公路交通系統模擬模式	第十一、十三、十六、十十、十八章模擬模式	ZIP	PDF	連結	111.06

https://thcs.iot.gov.tw

- 過去THCS為包裹式軟體
- 新版THCS採各分析軟體

獨立下載

電話:(02)2349-6789,傅真:(02)2717-6381 地址:10548 臺北市松山區軟化比路240% ♀ 建議使用:IE9.0以上或 Edge、Firefox、Chrome 瀏覽器,最佳瀏覽解析度:1024*768 聯絡人員:吳宣萱 yxwu@ceci.com.tw (02)8797-3557 #1627

過去THCS 包裹式軟體

新版THCS 各軟體獨立下載

■ 本軟體安裝作業系統需求為: Windows 7以上版本

- 點選安裝檔兩下即可安裝

Microsoft Edge 臺灣公路容量分析軟體(THCS) 公路交通系統模擬模式 B 市區公車設施分析 市區地下道號誌化路口分析 👼 市區高架快速道路基本路段分析 多車道郊區公路號誌化路口容量 M 郊區多車道公路分析 ○ 郊區雙車道公路分析 高速公路交鐵路段分析 高速公路基本路段分析 🡿 高速公路進出口匝道分析 ▼ 高速公路隧道分析 上一頁 主書面 搜尋程式及檔案 Q e 目 0 -

□ 進入控制台之「程式和功能」解除安裝

0 程式和功能					-	o x
← → ☆ ↑ 🚺 > 控制台 >	· 所有控制台項目 > 程式和功能		~	5 Q	搜尋 程式和功能	
檔案(F) 編輯(E) 檢視(V) 工具	l(T)			- 🖌 🖻	🗎 🗙 🗸	= ()
控制台首頁	解除安裝或變更程式					
檢視已安裝的更新 ♥ 開啟或關閉 Windows 功能	若要解除安裝程式,請從清單選取程式,然後按一下	、[解除安装]、[變更] 或 [修復]。				
從網路安裝程式	組合管理 ▼ 解除安裝 變更 修復				83	- 🥐
			2021/3/29 2021/6/2 2021/6/2 2021/3/16 2021/3/16 2021/5/19 2021/6/17 2021/6/18 2021/6/18 2021/6/18 2021/6/2 2021/6/2 2021/6/2 2021/6/2 2021/6/2 2021/6/2 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/18 2021/6/17 2021/6/18 2020/8/28 2021/6/18 2021/6/18 2021/6/18 2020/8/28 2021/6/18 20	10.3 MB 59.4 MB 2.98 MB 332 MB 6.17 MB 4.05 MB 3.78 MB 4.02 MB 1.95 MB	AUC中部 60.0.8 1.5.6.19 3.4.6.2 4.2.3.30 9.0.0 1	
選取了1個項目	000	•		4.05 MB	📃 電腦	

公路容量研究歷程 及軟體概述

6

■ 公路容量分析作業

主要利用各種模式及對交通特性之了解,
 藉以分析某交通設施所能容受移動中之
 人流或車流的能力。

的

提供規設人員客觀資料以探討交通設施 之供需關係,決定適當的規劃設計或運 作策略,維持交通服務品質。

流量 (輛/時、人/時)

容量(Capacity)

應

用

主要應用於訂定某特定服務水準下之設 施需求或運轉策略,作為規劃、分配資 源依據或道路設計之建議,並可評估交 通衝擊。

臺灣公路容量手冊介紹

8_

臺灣公路容量手冊介紹

■ 阻斷性與非阻斷性車流基本定義

- 阻斷性車流
 - 車輛無優先路權,須減速或停車以讓路
 - 例如:號誌化口、非號誌化路口、郊區/市區
 幹道……等平面道路受號誌或「停」、「讓」
 標誌控制之車流

資料來源:https://k8.housetube.tw/k3207

- 非阻斷性車流
 - 車輛有優先路權
 - 例如:高速公路隧道、高速公路基本路段、
 高速公路進出口匝道路段、郊區多車道公路、
 郊區雙車道公路

資料來源:交通部高速公路局網站, https://www.freeway.gov.tw/Publish.aspx?cnid=2086&p=14377

臺灣公路容量手冊主目錄

✓ 第4~19章,說明不同公路設 施之車流特性、容量及服務 水準分析方法

高速公路系統

第一章 緒論 第二章 基本觀念 第三章 高速公路系統 第四章 高速公路基本路段 第五章 高速公路進口匝道路段 第六章 高速公路出口匝道路段 第七章 高速公路交織路段 第八章 高速公路隧道 第九章 市區高架快速道路基本路段 第十章 市區地下道號誌化路口 第十一章 郊區多車道公路 第十二章 郊區雙車道公路 第十三章 市區號誌化路口 第十四章 非號誌化路口 第十五章 圓環 第十六章 市區幹道 第十七章 市區公車設施 第十八章 機車專用道 第十九章 行人設施 附錄 A 2021 年版公路交通系統模擬 (HTSS)模式使用手册 附錄 B 停等延滯現場調查方法

 服務水準指標及劃分標準,大致可依非阻斷及阻斷性 車流設施,分為2類

非阻斷性車流設施	阻斷性車流設施
◆CH4高速公路基本路段	◆CH10市區地下道號誌化路口
◆CH5高速公路進口匝道路段	◆CH11.4郊區多車道公路
◆CH6高速公路出口匝道路段	◆CH13市區號誌化路口
◆CH8高速公路隧道	◆CH16市區幹道
◆CH9市區高架快速道路基本路段	◆CH17市區公車設施
◆CH11.3郊區多車道公路	◆CH18機車專用道
◆CH12郊區雙車道公路	
服務水準指標(2碼)	服務水準指標
需求流率/容量(V/C)、	路口——平均停等延滞
平均速率/速限	幹道 平均速率/速限

其他:CH7高速公路交織路段-平均速率、CH14非號誌化路口-保留容量、CH15圓環 -需求流率/容量(V/C)、CH19行人設施-行人平均占有面積/流率/密度/速率

臺灣公路容量手冊介紹

■非阻斷性車流設施服務水準指標及劃分標準

服務水準	需求流率/容量(V/C)	服務水準	平均速率/速限
А	V/C≦0.25	1	$\overline{V}/V_L \ge 0.90$
В	0.25 <v c≦0.50<="" td=""><td>2</td><td>$0.80 \leq \overline{V}/V_L < 0.90$</td></v>	2	$0.80 \leq \overline{V}/V_L < 0.90$
С	0.50 <v c≦0.80<="" td=""><td>3</td><td>$0.60 \leq \overline{V} / V_L < 0.80$</td></v>	3	$0.60 \leq \overline{V} / V_L < 0.80$
D	0.80 <v c≦0.90<="" td=""><td>4</td><td>$0.40 \leq \overline{V} / V_L < 0.60$</td></v>	4	$0.40 \leq \overline{V} / V_L < 0.60$
E	0.90 <v c≦1.0<="" td=""><td>5</td><td>$0.20 \leq \overline{V} / V_L < 0.40$</td></v>	5	$0.20 \leq \overline{V} / V_L < 0.40$
F	V/C>1.0	6	$\bar{V}/V_L < 0.20$

「平均速率/速限」劃分之1[~]6級, 並非與V/C劃分之A[~]F級逐一對照
 ▶ 平坦路段:運轉分析時,對照檢核V/C指標是否落入F級(V為需求流率)
 ▶ 坡度路段: V/C很低時(如A級),平均速率有可能也很低(服務品質很差)

■阻斷性車流設施服務水準指標及劃分標準

路口

幹道

服務水準	平均停等延滞 <i>,d</i> (秒/車)	服務水準	平均速率/速限
А	<i>d</i> ≤ 15	А	$\overline{V}/V_L \ge 0.80$
В	15 < <i>d</i> ≤ 30	В	$0.60 \le \overline{V} / V_L < 0.80$
С	30 < <i>d</i> ≤ 45	С	$0.50 \le \overline{V} / V_L < 0.60$
D	45 <i>< d</i> ≤ 60	D	$0.40 \le \overline{V} / V_L < 0.50$
E	60 < <i>d</i> ≤ 80	E	$0.20 \le \overline{V} / V_L < 0.40$
F	<i>d</i> > 80	F	$\overline{V}/V_L < 0.20$

臺灣公路容量手冊介紹

■非阻斷性車流章節

- CH4~8 高速公路系統
- CH9 市區高架快速道路基本路段
- CH11 郊區多車道公路(11.3節) 1
- CH12 郊區雙車道公路

- 1. 車流特性-平坦&坡度路段
- 2. 績效指標及服務水準劃分標準

2

3

4

3. 分析方法-平坦&坡度路段

4. 應用例題

第四章 高速公路基本路段

目 錄

	真次
4.1 緒論	4-1
4.2 分析對象	4-2
4.3 車流特性	4-2
4.3.1 車種組成	4-2
4.3.2 車種之車道分布	4-3
4.3.3 車流之車道分布	4-6
4.3.4 平坦路段大型車輛之小車當量	4-9
4.3.5 平坦路段平均自由速率	4-12
4.3.6 平坦路段代表性流率與速率關係	4-13
4.3.7 平坦路段之容量	4-21
4.3.8 代表性車輛之總重/馬力比	4-22
- 4.3.9 代表性聯結車於坡度路段之速率與行車距離關係	4-22
4.3.10 坡度路段平均速率與流率之關係	4-24
4.3.11 占有率與車流密度之關係	4-24
4.4 績效指標及服務水準劃分標準	4-26
4.5 分析方法	4-28
4.5.1 平坦路段之服務水準分析	4-29
4.5.2 代表性重車於坡度路段之速率變化分析	4-32
- 4.5.3 坡度路段之服務水準分析	4-35
L 4.5.3.1 坡度路段之判別	4-35
4.5.3.2 服務水準評估	4-38
4.6 應用例題	4-41
参考文獻	4-50

■ 號誌化路口章節

- CH10 市區地下道號誌化路口
- CH11 郊區多車道公路(11.4節)
- CH13 市區號誌化路口

13.6.2	績效指標言	平估方法	. 13-35
13.7 應用例是	嗄		. 13-37
13.7.1	例題1:	無衝突直行與直行/右轉共用禁行機車道	13-37
13.7.2	例題2:	無衝突左轉禁行機車道	. 13 <mark>-4</mark> 0
13.7.3	例題3:	無衝突左轉/直行共用禁行機車道	. 13-41
13.7.4	例題4:	直行/右轉共用車道(含機車停等區)	. 13-42
13.7.5	例題5:	其他無衝突車流車道	. 13-43
13.7.6	例題6:	衝突行人之影響	. 13-44
13.7.7	例題7:	衝突左轉車道	13-44
13.7.8	例題8:	週期長度之影響	. 13-45
13.7.9	例題9:	需求流率/容量比與停等延滞	. 13-46
13.7.10	例題10:	需求流率/容量比之適用性	. 13-48
13.7.11	例題11:	號誌時差之影響	. 13-48
參考文獻			. 13-49

第十三章 市區號誌化路口

目 錄

		頁次
13.1	緒論	
13.2	影響容量及服務水準之因素	
	13.2.1 號誌控制策略	<mark>13-</mark> 2
	13.2.2 幾何設計及槽化	<u>13-</u> 6
	13.2.3 交通狀況及駕駛人之行為	
13.3	容量估計之方法	
13.4	式(13.2)之相關參數及調整因素	
	13.4.1 Ngii 及路口所在市區調整因素 fz	
	13.4.2 車種及行進方向調整因素 fr	13-10
	13.4.3 坡度調整因素f	13-11
	13.4.4 公車站調整因素方	13-11
	13.4.5 路邊停車調整因素 fs	13-13
	13.4.6 衝突行人調整因素 fr	13-13
13.5	各類型車道之容量估計	13-16
	13.5.1 無衝突直行禁行機車道	13-16
	13.5.2 無衝突左轉/直行共用禁行機車道	
	13.5.3 無衝突直行/右轉共用禁行機車道	13-18
	13.5.4 無衝突直行/右轉共用車道(含機車停等區)	13- <mark>1</mark> 9
	13.5.5 無衝突左轉車道	
	13.5.6 其他無衝突車流車道	13-24
	13.5.7 衝突左轉車道	13-25
	13.5.8 機車 專用 道	13-31
13.6	績效指標及服務水準劃分標準	13-32
	13.6.1 績效指標(Measures of Effectiveness)	
	13.6.1.1 流量/容量比(V/C Ratio)	
	13.6.1.2 平均延滞時間(Average Delay)	
	13.6.1.3 每週期最長等候車隊之平均長度及	
	剩餘路口間距	
	13.6.1.4 服務水準之劃分標準	

15

■ 臺灣公路容量手冊

<u>分析性模式</u>

表 11.1 平坦非阻斷性車流路段之空間平均自由速率

0.0

th 56	速限	自由速率 (公里/小時)
平裡	(公里/小時)	平均值	標準差
	60	67	3.6
小車	70	70	3.1
	80	89	1.8
J. de	60 或 70	66	3.6
入平	80	78	3.2
44	60	67	10 414
150 -4-	70	70	620

資料來源:[4]。

<u>模擬模式</u>

檔案	(F) #	ЩЩ(E)	格式(0	O) 1	食視(V)	說明(H)				
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 160 4729 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2 900 2788 50 1 52 1 51 51 1 2 2 1 55 2 53 2	39 1 52 1 50 1 51 51 1 2 2 2 53 2 55	0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0	1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1				Print option, runs Sim Intervals (lst one is warm-up) negative, seeds LINK,UP & down nodes, express, base	
4 4 4 5 5 5	17 18 19 20 1 2	2 54 54 0	54 54 2 51 2	0 1 1 0 0	1 0 0 52 50	0	2	0	Link, downstream node for 7 turns	
5	4	V	4	0	00	v	51	v		
5555	5670	0 0	52 52	0 0	2 2	0 0	50 50	0 0		
5	0	0	50	0	51	0	50	0		

	C 24871 Y 17 17 10		and the second	State A
:>>CECI2015				
metric unit	is used			
input file u	vill not b	e printed out		
****RUN=	1			
Simulation	Time=	100		
Simulation	Time=	200		
Simulation	Time=	300		
Simulation	Time=	400		
Simulation	Time=	500		
Simulation	Time=	600		
Simulation	Time=	700		
Simulation	Time=	800		
Simulation	Time=	900		
Simulation	Time=	1000		
Simulation	Time=	1100		
Simulation	Time=	1200		
Simulation	Time=	1300		
Simulation	Time=	1400		
Simulation	Time=	1500		
****RUN=	2			
Simulation	Time=	100		
Simulation	Time=	200		
Simulation	Time=	300		
Simulation	Time=	400		

■ THCS計畫緣起

- 臺灣公路容量手冊是國內交通分析必備工具書, 惟公式圖表甚多,加上近年發展之模擬程式,宜 有一整合性軟體幫助使用者快速上手

■ THCS計畫概況

- - 配合容量手冊內容,逐年開發子系統程式,並進一
 步增進介面親和性,提高使用意願
- 提供軟體使用手冊及本土化例題供使用者參閱
 建置網頁提供最新資訊與溝通平台・辦理教育訓練

執行計算

平均自由速率(Uf):

V/C:

97 kph

1.143

2629 pcphpl

- kph

F- 級

分析结果

內重道需求流率(ge):

平均行重速率(S):

服務水準(LOS):

○ 內部節點

🔵 邊界節點

○ 選取節點

公車路線數: 0 → ※ 諸點還清單上的項目並使用滑鼠右鍵以編輯路線名稱。 下一步

公路容量手冊中不同公路設施之分析方法・可分為 分析模式及模擬模式

■ 高速公路設施子系統

基本路段、進出口匝道路
 段、交織區段、高速公路
 隧道**皆屬主線路段**

設施類別	手冊章節 評估指標		模式型態	軟體子系統
基本路段	第4章	V/C+速率/速限	分析性模式 模擬模式	高速公路基本路段分析
進口匝道路段	第5章 V/C+速率/速限		分析性模式	高速公路匝道路段分析
出口匝道路段	出口匝道路段 第6章 V/C		分析性模式	高速公路匝道路段分析
交織區段	第7章	平均速率	分析性模式	高速公路交織路段分析
高速公路隧道 第8章		V/C+速率/速限	分析性模式	高速公路隧道分析

→ 國5、國3隧道應使用第8章進行容量分析

■ 郊區公路設施子系統

設施類別	手冊章節	評估指標	模式型態	軟體子系統
郊區多車道公路— 非阻斷性車流	第11章	V/C+速率/速限	分析性模式 模擬模式	郊區多車道公路分析
郊區多車道公路—	第11章	路口:延滯	分析性模式	郊區多車道公路號誌化 路口分析
阻斷性車流	流	路段:速率/速限 路口:延滯	模擬模式	公路交通系統模擬模式
郊區雙車道公路	第12章	V/C+速率/速限	分析性模式 模擬模式	郊區雙車道公路分析

■ 市區道路設施子系統

設施類別	手冊章節	- 冊章節 評估指標 模式型態 軟		軟體開發	
市區高架快速道路	第9章	密度/速率	分析性模式	市區高架快速道路分析	
市區地下道號誌化路口	第10章	僅估算容量	分析性模式	市區地下道號誌化路口分析	
		吸口征泄	分析性模式	號誌化路口分析	
5%前16次又哈口	513早 		模擬模式	公路交通系統模擬模式	
非號誌化交叉路口	第14章	保留容量	分析性模式	非號誌化交叉路口分析	
市區幹道	第16章	速率/速限	模擬模式	公路交通系統模擬模式	

■ 其他設施子系統

設施類別	手冊章節	評估指標	模式型態	軟體開發
市區公車設施— 公車站容量計算	第17章	僅估算容量	分析性模式	市區公車設施
市區公車設施— 專用道運作	第17章	延滯	模擬模式	市區公車設施
機車專用道— 非阻斷性容量計算	第18章	僅估算容量	分析性模式	機車專用道分析
機車專用道— 受號誌影響運作	第18章	延滯	模擬模式	機車專用道分析
行人交通設施	第19章	行人流率	分析性模式	行人設施服務分析
圓環	第15章	V/C	分析性模式	圓環服務水準分析

■ 辦理教育訓練

歷年來已辦理北中南區共39場教育訓練 推廣宣導本軟體的使用方式,並蒐集使用者之意見回饋

■ 臺灣公路容量專區網頁

下載專區

網站導覽

公路容量手册 分析軟體

教意訓練相關檔案

章節	檔案名稱	手冊檔案	更新日期
*	全冊完整檔	PDF	111.06
第一章	緒論	PDF	111.06
第二章	基本觀念	PDF	111.06
第三章	高速公路系統	PDF	111.06
第四章	高速公路基本路段	PDF	111.06
第五章	高速公路進口匝道路段	PDF	111.06
第六章	高速公路出口匝道路段	PDF	111.06
第七章	高速公路交織區段	PDF	111.06
第八章	高速公路隧道	PDF	111.06
第九章	市區高架快速道路基本路段	PDF	111.06
第十章	市區地下道號誌化路口	PDF	111.06
第十一章	郊區多車道公路	PDF	111.06
第十二章	郊區雙車道公路	PDF	111.06
第十三章	市區號誌化路口	PDF	111.06
第十四章	非聴該化路口	PDF	111.06

https://thcs.iot.gov.tw ▶ 由運研所首頁臺灣公路容量專區連結

公路容量手冊下載 增訂章節與勘誤 DOS工具程式 THCS下載 軟體最新版 使用手冊

推廣與應用

- 安裝、存取
 配合之元件
- ◆ 程式應用
 - 輸入資訊
 - 常見錯誤
 - 實務應用

- 子系統適用
- 單位、定義

軟體系統性問題 程式應用問題 方法論相關問題

Q1. 各子系統所產生之報表如何應用?

Q2. 容量手冊及本土化例題例題如何存取?

Q3. 安裝THCS軟體時出現缺少Framework...元件之提示訊息,該如何處理?

Q1. 各子系統所產生之報表如何應用?

使用者可另存新檔為網頁格式或文字格式另作應用,亦可選取「列印」功能進行列印。

Q2. 容量手冊及本土化例题例题如何存取?

本軟體已將容量手冊以及軟體增訂之演算例題置於 C:\Program Files (x86)\THCS\samples或C:\Program Files\THCS\samples

Q3. 安裝THCS軟體時出現缺少Framework...元件之提示訊息,該如何處理?

因本軟體之部分子系統係以 .NET Framework 程式語言開發,諸上網下載.net Framework 3.5 以上程式安装後,即可順利安裝THCS軟體

交通部運輸研究所 Institute of Transportation, MOTC 電話:(02) 2349-6789,傅真:(02) 2717-6381 地址:10548 壹北市松山區敦化北路240號 ♀

2015年日、ICOONLET Frage Conference 2015日、日本部長年が成度: 1024*768 聯絡人員: 吳宜萱 yxwu@ceci.com.tw (02) 8797-3567 #1627 Тор

Тор

Тор

號誌化路口-公路交通系統模擬模式(HTSS)

基本定義

容量手冊第13章

本章將車道分成下列8大類進行分析:
1.直行快車道; ←指禁行機車之快車道
2.無衝突車流之直行/左轉共用快車道;
3.無衝突車流之直行/右轉共用快車道;
4.無衝突車流之直行/右轉共用的混合車流車道;
5.無衝突車流之左轉車道;
6.其他無衝突車流之車道;
7.衝突左轉車道; 以車道群容量概念計算
8.機車專用道。 V/C→計算總延滯

衝突路口、多叉路口 需反映複雜車流

使用分析性模式,惟適用時機很少,通常可直接使用模擬模式

號誌化路口-公路交通系統模擬模式(HTSS)

- HTSS--Highway Traffic Systems Simulation Model
- 微觀模擬公路交通系統
 - 獨立路口
 - 幹道
 - 路網

公路交通系統模擬模式-輸入方式

視窗化界面

原始輸入檔型『HTSS.txt』

純文字檔輸入

🖡 HISS - 記事本									
檔3	案(F) 縦	輪(E)	格式(0)	檢調	見(ツ)	說明(H)			
h	2	0	2	1					~
2	300	180	0						
3	0	155	584571						
4	1	1	51	0	1				
4	2	51	1	0	1				
4	3	1	50	0	1				
4	4	50	1	0	0				
4	5	1	52	0	1				
4	6	52	1	0	0				
4	7	1	53	0	1				
4	8	53	1	0	0				
5	1	0	0	Ø	51	0	0	0	
5	2	0	50	Ø	52	0	53	0	
5	3	0	0	0	50	0	0	0	
5	4	0	52	0	53	0	51	0	
5	5	0	0	0	52	0	0	0	
5	6	0	53	0	51	0	50	0	
5	7	0	0	0	53	0	0	0	
5	8	0	51	0	50	0	52	0	
15	1	0	2	Ø	50				
15	2	1	2	0	50				
15	3	0	4	0	50				
15	4	1	4	0	50				
15	5	0	2	0	50				
15	6	1	2	0	50				
15	7	0	4	0	50				
15	8	1	4	0	50				

┿

公路交通系統模擬模式-分析流程

公路交通系統模擬模式-路網規劃設定

內部節點

邊界節點

選取節點

公路交通系統模擬模式-模擬作業設定

公路交通系統模擬模式-線形設定

下一步

儲存設定

上一步

4.全數完成設定後, 可進入下一標籤頁面

公路交通系統模擬模式-節線資料設定

-36

- 37

公路交通系統模擬模式-機車區設定

對照表B資料輸入

38

公路交通系統模擬模式-車道寬度

公路交通系統模擬模式-公車站設定

	建立 模擬作為 模擬路網 設定	節線線形 設定	節點 設定	流率 設定	公車 設定	執行 模擬
--	--------------------	------------	----------	-------	----------	----------

對照表C資料輸入

ep 5:2 公审ài	】車站讀 "≫‱	没定				車道圖示
所屬國	」 重道:	1 👻		L1:0	(1)	
車站類	趣:	於專用道上無公車	₫ .	L2: 12	 会	1.輸入車站資料設定值
停靠明	時間:	0 🏩 秒		L3:0	 二 公	
×11	1121	12定姜续船七周	公审社副例。		¥h 均容	
~ 141					#F1 - B	<u> </u>
編號	車道	車站類型	停靠時間	L1	L2	2 新增亩站
•	4	於專用迫上無公	15	25	25 0	
2	4	於專用道上無公	15	0	25 0	
編號 1 2	路線1 203 41	路線2 路線 214 × 222 49 × 5	3 路線4 • 226 • • 527 •	路線5 277 612	路線6 279 ▼ 642 ▼	線7 線7 公車站設定圖例 ④ 有公車站臺
			:	3.新增	停靠路	

40

公路交通系統模擬模式-轉向比例設定

對照表D資料輸入

1.輸入各車種轉向比例 表D

41

公路交通系統模擬模式-路口時相設定

公路交通系統模擬模式-流率及車種設定

節線線形

模擬作業

建立

流率

執行

公路交通系統模擬模式-路徑績效設定

公路交通系統模擬模式-公車路線設定

公路交通系統模擬模式-執行及輸出結果

模擬執行狀態……

輸出結果—車站與路徑

路徑編號	節線編號	速限 (公里/小時)	平均路段長度 (公尺)	平均旅行速率 (公里/小時)	標準差 (公里/小時)	服務水準	
	8	2	0.0	0.0			
	8	1	0.0	0.0			
	7	2	83.9	10.5			
	7	1	100.0	0.0			
	1	2	77.2	25.5			
	1	1	100.0	0.0			
	節線	車站	等候進站比率 (%)	等候進站最長車 (公車數)	隊		
	路徑編號	1 1 7 7 8 8 8 1 路径結批 10484編批	節線 車站 1 1 1 2 7 1 7 2 8 1 8 2 路径編號 (公里小時)	in in	総合 車站 等税進站品長単 (公) 等税進站品長単 (公車数) 1 1 100.0 0.0 1 2 77.2 25.5 7 1 100.0 0.0 7 2 83.9 10.5 8 1 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0	施設 車站 等便進站比率 (%) 等便進站最長車隊 (公車敷) 1 1 100.0 0.0 1 2 77.2 25.5 7 1 100.0 0.0 7 2 83.9 10.5 8 1 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0	施設 車站 等鉄進站比率 (%) 等鉄進站最長車部 (公車敷) 1 1 100.0 0.0 1 2 77.2 25.5 7 1 100.0 0.0 7 2 83.9 10.5 8 1 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0 8 2 0.0 0.0

輸出結果—節線

f								
節線	車道	流率 (輌/小時)	停等延滞 (秒/輛)	服務水準	總延滯 (秒/輌)	停等長度 (公尺)	平均旅行速率 (公里/小時)	初始停等車隊 (輛)
1	1	738	105.2	F	143.7	2.8	10.5	0.0
1	2	820	92.5	F	128.5	0.0	11.4	0.5
1	3	727	203.8	F	283.7	89.0	5.8	0.5
1	4	123	289.3	F	358.4	39.6	4.5	0.5
2	1	196	0.0	А	4.6	0.0	48.0	0.0
2	2	181	0.0	А	4.6	0.0	48.2	0.0
2	3	147	0.0	А	4.3	0.0	48.2	0.0
3	1	519	0.0	А	5.5	0.0	46.8	0.0
3	2	596	0.0	A	4.9	0.0	48.1	0.0
3	3	575	0.0	А	4.2	0.0	48.2	0.0
4	1	518	229.3	F	268.2	0.5	6.0	0.0
4	2	512	215.8	F	255.1	0.0	6.2	0.0
4	3	759	174.9	F	216.7	0.0	7.2	1.0
5	1	735	0.0	А	5.9	0.0	46.3	0.0
5	2	729	0.0	A	5.9	0.0	46.4	0.0
5	3	721	0.0	А	5.7	0.0	46.7	0.0
6	1	529	127.5	F	151.1	0.3	10.2	0.5
6	2	533	125.5	F	149.0	0.0	10.3	0.0
6	3	139	292.3	F	312.9	13.3	5.3	1.5
7	1	390	61.3	E	74.2	0.3	16.4	1.0
7	2	372	54.3	D	63.3	0.0	18.5	0.0
7	3	338	57.7	D	66.9	0.0	17.7	0.0

公路交通系統模擬模式-範例檔類型

節個榿夕	攺 畑館	設施特性				
単じ 17リ 1田 1コ		號誌	分隔	專用道	公車	
ISO2P.sim		二時相 獨立路口	無	無	無	
ISO4P.sim	$51 \xrightarrow{7} 1 \xrightarrow{8} 53$ $4 \xrightarrow{1} 1$ 50	四時相 獨立路口	無	東西向 有機車 專用道	無	
ART1.sim	51 51 53 3 2 15 14 6 7 1 9 2 19 55 6 4 11 12 17 18 52 54	三時相 連續兩路口	東西向有 快慢分隔	無	無	
ART2.sim	52 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	四時相 連續兩路口	無	東向有 機車專 用道	無	
	50 55		C:\THCS\	HTSS\sam	ples	

公路交通系統模擬模式-範例檔類型

節例榿夕	▶		設施特性		
	ドロ 利少 (日) (単)	號誌	分隔	專用道	公車
ART3.sim	51 52 53 54 23 22 27 26 31 30 35 34 4 12 10 14 18 17 24 21 28 25 32 29 36 33 59 58 57 56	二時相 連續四 路口	東西向有快慢分隔	無	無
ART4.sim		三時相 連續12 路口	東西向有快慢分隔	無	無
NET1.sim		二~四 時相 路網	東西向之北側第一 條道路、南北向西 側第一條道路有快 慢分隔	無	無
五岔路口 範例.sim	52 $10 9$ $50 \leftarrow 1$ $7 \rightarrow 54$ $34 \rightarrow 5 \rightarrow 6$	四時相 獨立路 口	無	無	無
			📙 С:\ТНСS\НТS	S\sampl	es

公路交通系統模擬模式-操作例題

公路交通系統模擬模式-常見問題

- 為什麼執行模擬後沒有分析結果?
 - 可能進入路網之車流量超過路網可負荷量,建議先減少流量檢視模 擬設定是否有其他問題。
 - 檢視各節線下游車道數比上游車道數多,如模擬路段靠近路口有增設車道,導致下游車道數較上游多時,應設定非全長車道之長度。
 - 如節線分開設定機車與大小車轉向比,應確認該節線有設定機車可使用之車道。
- HTSS模擬次數有限制嗎?以幾次較為適當?
 - 模擬次數上限為30次。模擬次數越多,模擬時間越長,可依路網 複雜度、電腦資源,增加模擬次數。
- HTSS之「熱機時間」為何意?
 - 熱機時間是指模擬作業初始將樣本(車輛)匯入空白路網,直至車流 達到一穩定狀態後的時間。
- 各節點可接的節線數量是否有限制?
 - 軟體最多可分析至5岔路口。

公路交通系統模擬模式-案例比較

■ 儲存案例模擬結果

- 選擇「模式」→「輸出結果CSV檔案」→另存新檔

公路交通系統模擬模式-案例比較

- 案例比較
 - 點選「檔案」,選擇「案例比較」,開啟CSV檔案

案例1 選擇檔案: C.Prog 計畫說明: 在原有 30秒之:	Ram Files (x86)\THC ts 家例 2 C.\Program File 的4時相後新增第5時相為 行人專用時相	◎ 3.開啟CSV檔案
·徑比較 路徑總最新 / 的名	皆權) → <mark>} → ≪ SYS (C:) → Program Files (x86) →</mark> 17理 ▼ 新増資料夾	THCS > samples + + 接霉 samples > 题曰
速限(km/hr) 率均路段長度(m) 平均旅行速率(km/hr) 服務水準	下載 桌面 最近的位置 避 art1_秒差65.csv 避 art1_秒差70.csv 変件 単 ISO2P a csv	:計畫概述 I: :節線編號,道路名稱,分隔型式,所在區域 R:1,,無分隔,郊區 R:2,,無分隔,郊區 R:3,,無分隔,郊區 R:4無分隔,郊區
3口比較	音楽 視訳 週 ISO4P_a.csv 周片 堅 ISO4P_b.csv 圖片 堅 ISO4P_c.csv	R:5,,無分隔,郊區 R:6,,無分隔,郊區 R:7,,無分隔,郊區 R:8,,無分隔,郊區 :節線,節線,流率,停等延滞,服務水準,總延 滞,停等長度,平均旅行速率,初始停等車隊 L:1,1,535,343.4,F,380.2,206.3,4.5,0.5
	DATA (D:) 	L:1,2,495,304.4,F,339.2,201.2,4.9,2 1.1 3 244 151 2 F 380 5 12 6 4 5 0

高速公路基本路段簡介 與實例演練

高速公路基本路段

基本定義

- 高速公路
 - 車輛進出受到完全管制之多車道分隔道路
- 基本路段
 - 車流不受匝道、交織路段、隧道及主線號誌控制等影響

新舊版高速公路評估方法比較

新舊版高速公路評估方法比較

▶ 舊版評估方式

5. 速差分為6個等級

V/C值	服務 平均速率與速限差距 水準 (公里/小時)		服務 水準
V/C≤0.35	V/C≤0.35 A ≤5		1
0.35 <v c≤0.60<="" td=""><td>В</td><td>6~10</td><td>2</td></v>	В	6~10	2
0.60 <v c≤0.85<="" td=""><td>С</td><td>11~25</td><td>3</td></v>	С	11~25	3
0.85 <v c≤0.95<="" td=""><td>D</td><td>16~25</td><td>4</td></v>	D	16~25	4
0.95 <v c≤1.0<="" td=""><td>E</td><td>26~35</td><td>5</td></v>	E	26~35	5
V/C>1.0	F	>35	6

新版評估方式

Fig. 1 Simulated Speed-Flow Relationships on Freeway Basic Segments

5. V/C微調、速率/速限分為6個等級

服務水準	v/c比	平均速率/速限	服務水準
А	V/C≦0.25	≧0.90	1
В	0.25 <v c≦0.50<="" td=""><td>0.80≦V/VL<0.89</td><td>2</td></v>	0.80≦V/VL<0.89	2
С	0.50 <v c≦0.80<="" td=""><td>0.60≦V/VL<0.80</td><td>3</td></v>	0.60≦V/VL<0.80	3
D	0.80 <v c≦0.90<="" td=""><td>0.40≦V/VL<0.60</td><td>4</td></v>	0.40≦V/VL<0.60	4
E	0.90 <v c≦1.0<="" td=""><td>0.20≦V/VL<0.40</td><td>5</td></v>	0.20≦V/VL<0.40	5
F	>1.0	V/VL<0.20	6

■ 評估流程

Q15= 尖峰15分鐘單方向之需求流率(輛/小時)

ADT= 設計年(design year)平均每日流量(輛)

K= 設計小時流量係數(都會區: 0.08~0.12; 其他區域0.12~0.16)

D= 流量之方向分佈係數(0.5~0.65)

Q60= 實際或預測之尖峰小時流率(輛/小時)

PHF= 尖峰小時係數(0.85~0.95)

!若有開放路肩,公式改為除(N+1)

Qe=單向每車道之平均對等小車需求流率(小車/小時/車道)

Q15=尖峰15分鐘單方向混合車流之需求流率(輛/小時)

n=小車除外之車種數

Pi=小車除外,車種i之比例

Ei=車種i之小車當量

N=車道數(若分析路段路肩開放,車道數加1)

小車當量值估計模式

- 運轉分析
 - 利用<mark>現場平均速率</mark>代入 右表模式計算
- 規劃及設計分析
 - 大型車輛採1.4當量值
 是保守且可接受的作法
 - 可將所有非小車之小車 當量訂為1.4

表 4.6 國 1 及國 3 大型車輛在平坦路段之小車當量估計模式

車種	估計模式	適用速率 V (公里/小時)
	$E_{SU} = 2.3 - 0.0216V$	≦38
大車	$E_{SU} = 1.72 - 0.00623 V$	38~115
	$E_{SU} = 1.0$	>115
	$E_{T4} = 1.13 + 1.226 e^{\frac{V}{36.883}}$	≦80
4 軸聯結車	$E_{T4} = 1.29 - \frac{0.6453}{1 + e^{\frac{V-114.24}{7.9753}}}$	80~112
	$E_{T4} = 1.0$	>112
	$E_{T5} = 2.45 - 0.0125V$	≦80
5 軸聯結車	$E_{T5} = 0.73 + 0.0243 V - 1.905 \times 10^{-4} V^2$	80~115
	$E_{T5} = 1.0$	>115

評估方法-訂定路段容量(1/3)

流率速率代表性關係

- 分為不開放路肩及開放路肩
 兩種模式
- 根據速限(VL)或自由速率
 (Vf)、對等需求流率對照路
 段容量(Qmax)

速限 (公里/小時)	平均自由速率 (公里/小時)
90	100
100	105
110	115

表 4.8 2車道平坦路段之代表性流率與速率關係

自由速率 V _f (公里/小時)	流率 Q (小車/小時/車道)	流率 Q 與速率 V之關係	容量 Qmax (小車/小時/車道)	臨界速率 (公里/小時)
	0~1,500	$V = 116.05 - \frac{21.042}{\frac{Q-2162.1}{1+e^{\frac{Q-2162.1}{725.26}}}}$		
115	1,500~2,050	$V = 113.05 - \frac{33.019}{1 + e^{\frac{Q-2.581.3}{467.67}}}$	2,050	105
	0~1,500	$V = 110.78 - \frac{19.579}{1 + e^{\frac{Q-2.070.2}{645.99}}}$		
110	1,500~2,000	$V = 107.92 - \frac{38.229}{1 + e^{\frac{Q-2.577.8}{427.41}}}$	2,000	100
	0~1,500	$V = 105.60 - \frac{14.781}{1 + e^{\frac{Q-1.743.2}{537.84}}}$		95
105	1,500~1,950	$V = 100.79 - \frac{18.473}{1 + e^{\frac{Q-2.124.5}{221.04}}}$	1,950	
100	0~1,500	$V = 100.60 - \frac{17.791}{1 + e^{\frac{Q - 1.974.8}{577.44}}}$		
	1,500~1,900	$V = 95.76 - \frac{28.001}{1 + e^{\frac{Q - 2,136.8}{173.44}}}$	1,900	90

高	速公	路基本路	科段 評	F估.	方法	1.	道路幾何設計 速限VL 車道數N 路肩開放與否	需求 尖峰小明 尖峰小時	流率 寺流率Q ·徐數PHF		
表	各車種之 車種組 (尖峰15分量 (各車道平 性流率與速率關	 ▶車當量E_i 或比例P_i 筆需求流率q ◆ ◆<!--</th-->									
自由速率 V _f (公里/小時)	· 流率 Q (小車/小時/車道)	流率 Q 與速率 V之關係	容量 Qmax (小車/小時/車道)	臨界速率 (公里/小時)	自由速率 V3 (公里/小時)	流率 Q (小車/小時/車道)	流率Q 與速率V之關係	容量 Qmax (小車/小時/車道)	臨界速率 (公里/小時)		
115	0~1,500	$V = 117.17 - \frac{37.722}{1 + e^{-\frac{Q-2.105.2}{751.37}}}$	- 1,850	100	115	0~1,200	$V = 115.95 - \frac{28.104}{1 + e^{\frac{Q-2.056.3}{609.89}}}$	1,800	100		
	1,500~1,850	$V = 110.01 - \frac{23.71}{1 + e^{-\frac{Q - 1.947.9}{309.48}}}$				1,200~1,800	$V = 111.11 - \frac{20.671}{1 + e^{-\frac{Q - 1.774.2}{172.06}}}$				
	0~1,500	$V = 111.62 - \frac{31.37}{1 + e^{-\frac{Q-1.839.4}{634.26}}}$	1 800	95			0~1,200	$V = 110.48 - \frac{18.225}{1 + e^{-\frac{Q - 1.552.2}{429.93}}}$	1.750		
110	1,500~1,800	$V = 104.32 - \frac{18.464}{1 + e^{-\frac{Q - 1.794.7}{246.49}}}$	1,000		110	1,200~1,750	$V = 106.75 - \frac{41.406}{1 + e^{-\frac{Q - 1.992.9}{261.38}}}$	1,750	56		
	0~1,500	$V = 106.73 - \frac{30.714}{1 + e^{-\frac{Q-1.746.1}{611.50}}}$	1.750	90		90		0~1,200	$V = 105.34 - \frac{21.742}{1 + e^{-\frac{Q-1,495.2}{358.76}}}$	1 700	
105	1,500~1,750	$V = 99.65 - \frac{33.186}{1 + e^{-\frac{Q-2.015.8}{298.08}}}$	1,750		105	1,500~1,700	$V = 102.47 - \frac{49.644}{1 + e^{-\frac{Q-2,091.5}{358.01}}}$	1,700	90		
	0~1,500	$V = 101.32 - \frac{32.721}{1 + e^{-\frac{Q-1.812.8}{567.22}}}$	1 700	85		0~1,200	$V = 100.26 - \frac{23.419}{1 + e^{-\frac{Q-1.511.3}{337.26}}}$	1.650	0.5		
100	1,500~1,700	$V = 92.898 - \frac{18.886}{1 + e^{-\frac{Q-1.759.1}{177.70}}}$	1,700	05	100	1,200~1,650	$V = 99.066 - \frac{146.832}{1 + e^{-\frac{Q-2,677.6}{456.80}}}$	1,650	83		
註:容量	、流率及速率為	,一般車道及路肩之平均值			註:容量	、流率及速率為	为一般車道及路肩車道之平:	均值			

■ 評估方法-計算V/C與V/VL

1. 計算V/C

- 利用公式4.5計算Qe
- 再根據流率速率代表性關係式求得容量(Qmax)
- V/C=Qe/Qmax

2. 計算平均速率與速限比值(V/VL)

- 運轉分析
 - 利用現場平均速率及路段速限計算
- 規劃及設計分析
 - Qe代入流率速率代表性關係式求得平均速率
 - 利用計算出之平均速率及路段速限計算

■ 坡度路段車流特性

- ▶ 坡度路段轉換小車流率後對照平 直路段QV關係下之速率,與原 坡度路段速率有差異,不能視為 對等車流
- ▶影響坡度路段速率與流率關係之 因素眾多,爰開發模擬模式進行 分析
 - 影響因素:坡度、坡長、車種 組成、車道使用行為……
 - 郊區雙車道公路還需考慮曲率
 半徑、以及允許超車路段長度
 等因素

▶ 提供判別坡度路段之運算檔

- checkgrade.exe

■ 坡度路段車流特性

- ▶新增現場調查所得之代表性車輛 之總重/馬力比
- ≻提供代表性重車於坡度路段之速 率與行車距離關係圖
 - 高速上坡、低速上坡、低速下坡
 - - 簡化規劃設計階段,坡度與坡長
 組合之分析

表 4.13 高速公路代表性車輛之總重/馬力	比
------------------------	---

車種	總重(kg)	馬力(kW)	總重/馬力比 (kg/kW)	
小車	2,000	36	56	
大客車	15,000	215	70	
大貨車	10,500	124	85	
聯結車	32,000	260	123	

坡度= -7%

-5%

-1%

0%

4.0

120

110

100

速

距離之關係

圖 4.22 高速公路 123 kg/kW 聯結車低速下坡後,速率與行車 距離之關係

▶ 代表性聯結車以95公里/小時之速率進入A點
 ▶ 試估計該車在B、C及D點之速率

■ 坡度路段車流特性

圖 4.30 代表性聯結車上坡減速時速率與行車距離之關係

圖 4.32 代表性聯結車下坡加速時速率與行車距離之關係

■ 平坦路段定義

- 1. 下坡路段
- 2. 無坡度路段
- 代表性車重車進入上坡路段後,進入速率下降不超過15公里/小時 之路段

高速公路基本路段評估方法-分析性模式

■ 平坦路段程式架構

	FREEWAY1 基本資料 資料分析 參考資料 分析報表		
	分析工作 分析型態: ⊚ 運轉分析 ⊚ 規劃及設計分析		
	幾何設計	需求流率	
	單向車道數: 2 ♣	單向流量(Q): 2000 🚽 車輛數小時	
	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	尖峰小時係數(PHF): 0.90 🦲	
道路幾何	路扇寬: 30 🐳 公尺	尖峰15分鐘流率 (Q15): 2222 車輛數小時	重步流家
設定	開放路局: 🛛 💿 是 💿 否		
	小車限速(VL): 100 → 公里小時	1	
	平均白由速率(Ⅴf): 105 ▼ 公里小時		
	各車種小車當量	車種比例	
小車當量	平均行車速率(3): 100.0 → 公里/小時 小型車 大車 四軸聯結車 小車當量 1.00 → 1.10 → 1.40 →	小型車 大車 四軸聯結車 車種比例(%) 100 💭 0 💭 0 💭	車種比例
		行計算	
	分析結果		
	毎車道平均對等小車流率 (Qe): 11111 小車/小時/車道 容量 (Qmax): 1950 小車/小時/車道 ∀ / C (Qe/Qmax): 0.57 服務水準 (LOS): C1 級	平均自由速率 (Vf): 105 公里/小時 平均行車速率 (S): 100 公里/小時 速差 (VL-S): 0 公里/小時	分析結果

■ 手動運算

一平坦路段有如下的幾何設計及交通狀況:		
(1)車道數:3		
(2)車道寬:3.65公尺		
(3)路肩寬:3公尺		
(4)尖峰小時流量:3,500輛/小時		
(5)尖峰小時係數:0.9		
(6)大型車比例:10%		
(7)速限:90公里/小時		
(8)平均行車速率:95.9公里/小時		
(9)自由速率:100公里/小時		

計算	公式 圖表
Q15=3,500/0.9=3,889(輛/小時)	3 4.
Esu=1.72-0.00623*95.9=1.12	表4.6
<i>Qe</i> =3,889[1+0.1*(1.12-1)]/3 =1,312(小車/小時/車道)	式4.5
Qmax=1,850(小車/小時/車道)	表4.9
V/C= <i>Qe/Qmax</i> =1, 312/1, 850=0.71	
V/VL=95.9/90=1.07	
服務水準=C1	表4.14 表4.15

軟體運算

Step1:點選高速公路基本路段分析

Step2:點選平坦路段

豊澤路段類型	×
● 平坦路段 下坡、無坡度路段,及代表性重車爬行後,速率下降不 超過5公里之上坡路段,使用分析性模式。	
 ○ 坡度路段 非屬平坦路段,使用模擬模式。 	
確定	

Step3:建立新專案

74

■ 軟體運算

FREEWAY_108_1					
基本資料 資料分析 参考資料 分析報表					
分析工作 分析型態: ● 運轉分析 ○ 規劃及設計分析					
幾何設計	需求流率				
單向車道數: 3€ 單位	車首數 單向流量(2): 3500 ÷ 車輛數小時	單向流量(車)	極少小時)		
車道寬: 3.65 ♀ 公尺	尖峰小時係數(PHF): 0.90 €	PHF			
路扇寬: 3.0 美 公尺	尖峰15分鐘流率 (Q15): 3889 車輛數/小時				
		尖峰15分建制	₹水流率		
開放路扇: ○是 ⑧ 否		(早輛數/小時	〕)		
小車限速(VL): 90 🗸 公里/小時	速限				
平均自由速率(∀f): 100 ✓ 公里/小時	白中速率				
	计计符				
→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→					
每車道平均對等小車流率 (Oe): 【312】小亩小城市 道	平均自由速率 (VA: 100 公里/小時				
容量 (Qmax): 1850 小車小時/車道	平均行車速率(3): 95.9 公里小時				
▼/C (Qe/Qmax): 0.71 V/C	平均速率/速限 (S/VL): 1.07 決	壑/涑 限			
服務水準 (LOS): C1 級 I OS					

承上題,若一高速公路基本路段如有單向3車道,容量為1,850小車/ 小時/車道,平均速率為95.9公里/小時,速限為90公里/小時。如果在尖 峰時將此路段之路肩開放,試評估對容量與速率之影響。

FREEWAY_111_1				
基本資料 資料分析 參考資料 分析報表				
** 平坦路段 **				
公析工作				
分析型態: ● 運轉分析 ○ 規劃及設計分析				
幾何設計	需求流率			
單向車道數: 3€	單向流量(Q): 3500 → 車輛數小時			
車道寬: 3.65 ➡ 公尺	尖峰小時係數(PHF): 0.90 €			
路扇寬: 3.0 😜 公尺	尖峰15分鐘流率 (Q15): 3889 車輛數小時			
開放路局: ●是 ○否 開放	路肩			
小車限速(VL): 90 公里//···································				
平均自由速率(Vf): 100 ∨ 公里小時				
冬亩蒲小亩尝母	直插 计例			
平均行車建率(3): 55.5 ▼ 公里/小時	小型車			
小型車 大車 四軸聯結車 車種比例(%) 90 ♀ 10 ♀ 小車當量 1.00 ♀ 1.12 ♀ 1.23 ♀				
執行計算				
分析結果				
每車道平均對等小車流率 (Oe): 984 小車/小時/車道	平均自由速率 (Vf): 100 公里/小時			
容量 (Omax): 1650 小車/小時/車道	平均行重速率 (Ÿ): 95.9 公里小時			
▼/C (De/Omax): 0.6				

77

高速公路基本路段評估方法-模擬模式

78

■ 坡度路段程式架構

■ 坡度路段程式架構

■ 實作例題

一長4公里,雙向各3車道之高速公路路段,車道寬3.6公尺,路肩寬3公尺,A往B方向開放路肩行駛。整個路段的速限為100公里/小時,平均自由速率為105公里/小時,路段主線車道容量為1,690小車/小時/車道, 臨界速率為90公里/小時,從A方向至B方向為一3%之上坡。試模擬此路段之交通運作。

高速公路基本路段評估方法-模擬模式

■ 模擬結果

簡報完畢 敬請指教